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This document contains supplementary information for Mechanical Breathing in Organic 

Electrochromics, including Supplementary Figures, Supplementary Table, and Supplementary 

Note.  Supplementary Movie 1 entitled “Mechanical breathing of the PProDOT thin film on 

ITO electrode” can be found at http://doi.org/10.17605/OSF.IO/5Y9AM .
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Supplementary Figure 1. The slope (P/d) of load-displacement in the nanoindentation test when 

the tip is approaching the surface of the thin film. The abrupt change in slope indicates the 

surface detection. 
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Supplementary Figure 2. AFM image of the PProDOT thin film. Average thickness is 

1222.0 1.0 nm. Customized indentation at the same location gives an average thickness of 

1278.5 92.9 nm. 
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Supplementary Figure 3. The traction-separation constitutive law to describe the damage 

initiation and crack growth at the interface. The traction force linearly increases upon reaching 

the maximum value Tic at a displacement of ui0.The traction maintains a constant value to mimic 

the plastic behavior at the interface, and then decreases linearly to zero at uif when the energy 

dissipated is equal to the interfacial toughness Gic. i = I (II) in case of mode-I (II) crack. The 

interface damage initiates at ui0 (D = 0) while crack opens at uif (D = 1). Unloading follows the 

dash line with reduced stiffness. 
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Supplementary Figure 4. Evolution of stress and damage along the interface during 1st cycle. a 

The damage function (solid lines) and shear stress profile (dotted lines) at the interface when 

the thin film is subject to various strains in the first oxidation reaction. b The shear stress profile 

at the interface when the thin film is subject to various strains in the first oxidation reaction 

(solid lines) and first reduction reaction (dotted lines). 
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Supplementary Figure 5. Surface profile of the ITO surface via optical surface profilometer. a 

Bare ITO.  b Roughened ITO. c SiNP treated ITO. Sq denotes the root mean square height of 

the surface. 
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Supplementary Figure 6. Scanning electron microscopy images of SiO2 nanoparticles deposited 

on ITO-glass substrate. Scale bar is a 2um and b 500nm, respectively.  White arrow indicates 

interparticle gaps. Red arrows indicate mud cracks induced by electron-wind forces during 

SEM imaging.
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Supplementary Table 1. The thin film thickness measurements by AFM and nanoindentation. 

 

Site No. AFM (nm) Nanoindenter (nm) 

1 925.3 3.8  991.8 67.6  

2 1222.0 1.0  1278.5 92.9  

3 1198.8 2.3  1140.8 183.4  

4 1121.1 1.6  1005.4 94.6  
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Supplementary Note 1 

Developed by Dugdale (1960) and Barenblatt (1962)1,2, cohesive zone model is widely 

used in modelling crack initiation and propagation. A trapezoidal traction-separation law, as 

described in Fig. S3, shows that when the relative displacement ui of the points in contact 

increases, the traction between the contacting surfaces increases linearly with a stiffness Ki 

before reaching the maximum value Tic at ui0, followed by a constant traction. i can be I (II) to 

denote normal(tangential) direction, and 
film

min(  )
i

E
K

mesh size
=  where Efilm is the modulus of the 

film. We set maximum normal traction the same value as yield stress Y
 , and maximum shear 

traction as Y
/ 6  such that damage initiates once plastic flow occur in the mode-II fracture. 

Young’s(shear) modulus is used as Efilm for normal (shear) stiffness in our simulation. The 

interface is damaged (D>0) when maximum traction is reached and fails (D=1) when the 

energy dissipated equals the interfacial toughness Gic (shaded area in Fig. S3) at a relative 

displacement of uif. For trapezoidal traction-separation law, a factor  , defined as the ratio 

between the plastic (constant traction) part and the total inelastic part, is used to characterize 

the shape of the trapezoid. 0.75 =  is used in the modelling3,4
. 

For mixed mode cracking, we define the displacement 
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A linear mixed mode failure law is assumed where 
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The damage function can be written as 
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     (7) 

Note that we modified the embedded code for calculating damage function via a variable 

monitoring the maximum extent of damage. This allows us to perform cyclic (non-

monotonous) loading. 
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